The kernel of the Rost invariant , Serre ’ s Conjecture II and the Hasse principle for quasi - split groups

نویسنده

  • V. Chernousov
چکیده

We prove that for a simple simply connected quasi-split group of type 3,6D4, E6, E7 defined over a perfect field F of characteristic 6= 2, 3 the Rost invariant has trivial kernel. In certain cases we give a formula for the Rost invariant. It follows immediately from the result above that if cdF ≤ 2 (resp. vcdF ≤ 2) then Serre’s Conjecture II (resp. the Hasse principle) holds for such a group. For a (C2)-field, in particular C(x, y), we prove the stronger result that Serre’s Conjecture II holds for all (not necessary quasi-split) exceptional groups of type 3,6D4, E6, E7.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rost Invariant Has Trivial Kernel for Quasi-split Groups of Low Rank

For G an almost simple simply connected algebraic group defined over a field F , Rost has shown that there exists a canonical map RG : H (F, G) → H(F, Q/Z(2)). This includes the Arason invariant for quadratic forms and Rost’s mod 3 invariant for Albert algebras as special cases. We show that RG has trivial kernel if G is quasi-split of type E6 or E7. A case-by-case analysis shows that it has tr...

متن کامل

Behavior of $R$-groups for $p$-adic inner forms of quasi-split special unitary groups

‎We study $R$-groups for $p$-adic inner forms of quasi-split special unitary groups‎. ‎We prove Arthur's conjecture‎, ‎the isomorphism between the Knapp-Stein $R$-group and the Langlands-Arthur $R$-group‎, ‎for quasi-split special unitary groups and their inner forms‎. ‎Furthermore‎, ‎we investigate the invariance of the Knapp-Stein $R$-group within $L$-packets and between inner forms‎. ‎This w...

متن کامل

An Invariant of Simple Algebraic Groups

The Rost invariant associated with a simple simply connected algebraic group G is used to define an invariant of strongly inner forms of G. This invariant takes values in a quotient of H(k, Q/Z(2)). It is used to answer a question of Serre about groups of type E6 and to prove a generalization of Gille’s splitting criterion for groups of type E6 and E7. For G a semisimple (affine) algebraic grou...

متن کامل

GROTHENDIECK—SERRE CONJECTURE FOR GROUPS OF TYPE F4 WITH TRIVIAL f3 INVARIANT

Assume that R is a semi-local regular ring containing an infinite perfect field. Let K be the field of fractions of R. Let H be a simple algebraic group of type F4 over R such that HK is the automorphism group of a 27-dimensional Jordan algebra which is a first Tits construction. If charK 6= 2 this means precisely that the f3 invariant of HK is trivial. We prove that the kernel of the map H ét ...

متن کامل

VARIATIONS ON A THEME OF GROUPS SPLITTING BY A QUADRATIC EXTENSION AND GROTHENDIECK-SERRE CONJECTURE FOR GROUP SCHEMES F4 WITH TRIVIAL g3 INVARIANT

We study structure properties of reductive group schemes defined over a local ring and splitting over its étale quadratic extension. As an application we prove Serre–Grothendieck conjecture on rationally trivial torsors over a local regular ring containing a field of characteristic 0 for group schemes of type F4 with trivial g3 invariant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008